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Identifying chaos in experimental data—noisy data—remains a challenging problem for which conclusive
arguments are still very difficult to provide. In order to avoid problems usually encountered with techniques
based on geometrical invariants �dimensions, Lyapunov exponent, etc.�, Poon and Barahona introduced a
numerical titration procedure which compares one-step-ahead predictions of linear and nonlinear models �Proc.
Natl. Acad. Sci. U.S.A. 98, 7107 �2001��. We investigate the aformentioned technique in the context of colored
noise or other types of nonchaotic behaviors. The main conclusion is that in several examples noise titration
fails to distinguish such nonchaotic signals from low-dimensional deterministic chaos.
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I. INTRODUCTION

Time series from the real world very often exhibit a com-
plex interplay between a deterministic and a stochastic com-
ponents �1�. Special attention is thus required to distinguish
any deterministic component within the signal. Many tech-
niques have been proposed to detect chaos, but none is fully
reliable. All such techniques rely on certain topological or
information measures of attractors reconstructed from the
data �2,3� and present some problems of specificity and reli-
ability �4,5�. The largest Lyapunov exponent fails to distin-
guish chaos from noise �6�.

A chaotic behavior is deterministic; that is, it can be de-
scribed by differential, difference, or delay-differential equa-
tions. Determinism is the paradigm in which the future is
determined by past and present events combined with a law
of nature, as understood by Laplace �7�. Laplace’s view fails
for chaotic systems, for which it is no longer possible to
predict the future for an infinite time. Due to this, chaos in
experimental data cannot always be distinguished from sto-
chasticity using statistical analysis �8� and identifying deter-
minism remains a challenge. Glass clearly pointed out that
prior to asserting that some dynamics is chaotic, there should
be clear evidence of determinism �9�.

By underlying determinism we mean low-dimensional de-
terminism, since high-dimensional determinism cannot be
distinguished from a stochastic process in general. Proving
that “low-dimensional” chaotic dynamics underlies a short
noisy time series is a most difficult problem to address. In
this respect surrogate data analysis has been used often �10�.
Unfortunately, such techniques only test whether the investi-
gated time series can be distinguished from surrogate data, or
not. This is therefore not a direct—and definite—answer to
the original question of detecting determinism.

Assuming that determinism has been detected, usually it
is desirable to go a step further and try to establish if the data
were produced by a dynamical process which is bounded,
sensitive to initial conditions, and recurrent. The first feature
is certainly the one that involves less risk. Sensitivity to ini-
tial conditions is usually established computing the largest
Lyapunov exponent, although such a computation is still a

great challenge for short and noisy time series �1�. Finally, by
definition, recurrence—which is related to the population of
unstable periodic orbits around which chaotic behaviors are
organized �11�—can only be tested for long time series. The
relative organization of periodic orbits leads to the architec-
ture of chaotic attractors �12�. Getting periodic orbits from
short time series necessarily requires the estimation of a glo-
bal model which can then be integrated over a long time �see
�13–16� among others�. One of the strongest pieces of evi-
dence of determinism underlying a data set is a valid global
model obtained from the data. When the measured time se-
ries is sufficiently long, topological analysis �17,18� is prob-
ably the most exacting validation procedure. When the time
series is short, other procedures should be considered
�19–21�.

Techniques for detecting the presence of nonlinear deter-
minism in experimental data have been discussed in �22,23�.
A technique referred to as “titration of chaos” based on nu-
merical titration of the data was proposed in �24�. More re-
cently, the method has been called “noise titration” �25,26�.
Unlike the surrogate data technique, noise titration has been
far less investigated in the literature, despite its claims and
promises. It is the objective of this Rapid Communication to
provide conclusions of such an investigation and to report
that noise titration has been found to incorrectly classify non-
deterministic systems as chaotic and to be generally inad-
equate to distinguish between low-dimensional chaos and
noise.

After a brief description of the noise titration technique
�Sec. II�, two examples where this technique fails are dis-
cussed in Sec. III before stating the main conclusions in Sec.
IV.

II. TITRATION OF CHAOS

Poon and Barahona’s method of chaos detection �24�—
that claims to be able to robustly test for the presence of
deterministic chaos in short, noisy time series—is based on
two steps: a nonlinear detection method �27� and gradual
addition of noise. The method is as follows. Linear and non-
linear models are obtained for the data under test. The
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method follows by verifying, within a certain confidence in-
terval, which model class better describes the data. After-
ward, white or linearly correlated noise is added to the data.
The standard deviation of the added noise is gradually in-
creased until the nonlinear model is not any better than the
linear one. At this point it is said that the method failed to
detect any nonlinearity. The standard deviation of the added
noise, �e, at this point, divided by the standard deviation of
the data, �y, multiplied by 100 is called the noise limit �NL�
and was interpreted as a measure of chaos in the data �24�.
The condition NL�0—in other words, the condition that a
certain amount of noise must be added in order for nonlin-
earity not to be detected or, equivalently, nonlinearity is de-
tected in the original data—is claimed to be sufficient to
confirm the presence of chaos.

In order to better understand the “titration-of-chaos”
method, some questions should be answered. First, what is
the motivation for adding noise to the data? The name “titra-
tion” comes from the analogy with the chemical process
where one measures the acid concentration in a solution by
gradually adding an alkaline solution of known concentration
until neutralization. As the volume of the base solution re-
quired to neutralize the acid is a measure of the acid’s con-
centration, so the noise variance required to prevent nonlin-
earity detection would be a measure of the chaoticity of the
data. However, if one is only interested in knowing whether
or not there is chaos, the proposed condition amounts to
NL�0. Technically speaking, the test for chaos does not
need the addition of noise.

The concept of titration is nice because noise is always
present in measured data and it becomes quite difficult to
provide a definite “yes-or-no” answer. Such a feature leads to
the distinction between noisy chaos and chaotic noise �1�.
Another important question is whether or not NL�0 really
implies chaos. In �24�, only one kind of system is studied:
deterministic nonlinear systems �chaotic or otherwise� with
measurement �additive� noise. It is shown that, for the par-
ticular type of systems studied, the NL value is correlated
with the largest Lyapunov exponent ��max�, at least in the
regions where �max is positive. Moreover, the conclusion that
NL�0 implies chaos is drawn from the analysis of how the
method behaves with these examples and nowhere a formal
proof of the claim is given. Does this conclusion remain
valid for other classes of systems? The next section will pro-
vide a negative answer for this question.

III. NONCHAOTIC CASES WITH NL�0

Consider the sine map xn+1=� sin�xn�, where � is a bifur-
cation parameter. This map is equivariant since applying
xn�−xn leads to xn+1�−xn+1. This means that solutions to
the sine map present some properties induced by an order-2
symmetry. For instance, when �� �2;3.1�, there are two co-
existing symmetry-related solutions, mapped to each other
by xn�−xn. When � is increased, two simultaneous period-
doubling cascades are observed as a route to chaos.

A deterministic nonchaotic randomly driven dynamics is
obtained using

xn+1 = � sin�xn� + Yn�n, �1�

with ��=2.4� for which a period-2 limit cycle is produced
and where Yn is a random variable from a Bernoulli process
and �n is an independently and identically distributed �iid�
random variable with a uniform distribution between −b and
b. The value of each Yn is 1 with probability q and 0 with
probability 1−q. When q is small, stochastic perturbations
are quite rare and the dynamics produced by �1� and the
original sine map are quite similar.

One thousand iterations of map �1� were produced using
q=0.01, �=2.4, and b=2 �Fig. 1�. The resulting behavior is
roughly a period-2 limit cycle, randomly destabilized by the
stochastic perturbations Yn�n, which are sometimes suffi-
cient to send the trajectory to the other symmetric solution,
as seen around iteration 620 in Fig. 1.

With q=0.01, only 11 perturbations occurred. After each
perturbation, there is a short transient after which the trajec-
tory settles onto one of the two coexisting period-2 limit
cycles. The first-return map �Fig. 2� shows two truncated
parabola with some points randomly distributed around.
“Parabolic” shapes are visited during transient regimes. Ob-
viously, this noisy periodic dynamics is not chaotic, but it is
nonlinear. This is confirmed by the largest Lyapunov expo-
nent, which is negative ��max=−0.65�.

According to �24�, white �or linearly correlated� noise of
increasing variance �e

2 is added to the data until any potential
nonlinearity goes undetected. This is determined by predict-
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FIG. 1. Time series �1000 points� produced by map �1�. Param-
eter values: �=2.4, b=2, and q=0.01.
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FIG. 2. First-return map computed from the trajectory solution
to map �1�.
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ing the noisy data with both linear and nonlinear models for
increasing �e

2. Assuming nonlinearity in the data, the nonlin-
ear models will outperform the linear ones up to a limiting
value of �e which is used to obtain the NL beyond which
there is no advantage in using nonlinear models for predic-
tion. Based on this scheme, Poon and Barahona would have
claimed that NL�0 indicates chaos and the value of NL
gives an estimate of its relative intensity. If such an assump-
tion was true, a NL�0 should be expected in the previous
example, since the dynamics studied is not chaotic. However,
NL=20% is obtained; that is, when noise with standard de-
viation �e=20�y /100 is added, nonlinear models perform
similar to linear ones. This would have been incorrectly in-
terpreted to indicate that the underlying dynamics is chaotic
because the original data are better predicted by a nonlinear
model than by a linear one for any reasonable model size
�Fig. 3�. This is therefore a first example where the noise
titration technique fails by giving a false positive detection of
chaos. Such a failure was not reported by Poon and Barahona
because they always investigated purely deterministic dy-
namics additively contaminated by noise. In a recent paper
different types of noise were investigated and pitfalls of the
noise titration procedure were pointed out �28�.

In order to produce a nonlinearly correlated noise, random
noise is used to drive a nonlinear moving average filter as

xn+1 = a�n + b�n−1�1 − �n� , �2�

where �n is a uniform iid random variable with values be-
tween 0 and 1. This random signal is nonlinear colored noise.
Its stochastic character is made evident by its first-return map
�Fig. 4�. No deterministic structure �like a parabolic shape or
other� can be found in Fig. 4. Since the dynamics underlying
the nonlinear moving average model �2� is obviously sensi-
tive to initial conditions, the largest Lyapunov exponent is
positive.

Applying noise titration to this stochastic solution to map
�2� leads to a noise limit NL=35%. According to Poon and
Barahona, this would indicate that these data correspond to
chaos with an intensity greater than in the previous example.
Again this would be a wrong conclusion. What is titrated is,

in fact, the action of the nonlinearity on the sensitivity to
initial conditions.

Consequently, once again, this technique would errone-
ously conclude in favor of a chaotic deterministic behavior,
although the underlying dynamics is clearly not determinis-
tic. The reason is similar as for the previous case; that is, this
nonlinear colored noise is predicted more accurately by non-
linear models than by linear ones.

Finally, we search for a purely chaotic dynamics for
which the noise limit was also about 35%. In order to do so,
the logistic map

xn+1 = �xn�1 − xn� �3�

was investigated with increasing values for parameter �. It
was finally found that for �=3.62, the noise limit was about
35%. For this � value, the first-return map looks like a two-
banded parabola �Fig. 5�. This means that in a blind test, the
noise titration does not differentiate between nonlinear col-
ored noise �Fig. 4� and a purely chaotic behavior �Fig. 5�.
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FIG. 3. Cost function C�k� for linear and nonlinear models for
no noise added ��e=0�. Linear and nonlinear autoregressive poly-
nomial models of increasing number of terms k were fitted to the
data. The cost function is C�k�=loge ��k�+ k

N , where k is the number
of terms, ��k� is the error, and N is the length of the time series �27�.
The nonlinear models are better predictors than the linear counter-
parts regardless the value of k.
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FIG. 4. First-return map computed from a trajectory produced
by �2�.
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FIG. 5. First-return map computed from a trajectory produced
by the logistic map �3�. Parameter value: �=3.62.
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The previous examples show that noise titration fails
when there is no underlying determinism by indicating
chaos, which is an impossibility, since there is no determin-
ism. This was never reported before because the original
paper only investigated deterministic dynamics.

IV. CONCLUSION

Asserting the presence of chaos in experimental data is a
rather difficult problem. In addressing this, low dimensional-
ity is an important aspect, because it is always possible to
assume that natural processes are deterministic by definition
�26�. But such an assumption has an unavoidable metaphysi-
cal character. Indeed, offering a proof for determinism is one
of the most difficult tasks one faces when experimental data
are investigated. Global modeling is an exacting technique

�29�, although it is observable dependent �30�. As with other
nonlinear detection schemes, when the objective is to decide
whether a dynamics is chaotic or not, noise titration also fails
under certain circumstances. In other words, whereas the
condition NL�0 is helpful to detect nonlinearity as pro-
posed in �27�, it is not a sufficient condition for chaos, as
suggested in �24�. Indeed, noise titration tells us more about
the nonlinear character of dynamical processes than about
“chaos intensity” as shown by the examples discussed in this
Rapid Communication.
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